18 research outputs found

    Data Collection in Two-Tier IoT Networks with Radio Frequency (RF) Energy Harvesting Devices and Tags

    Get PDF
    The Internet of things (IoT) is expected to connect physical objects and end-users using technologies such as wireless sensor networks and radio frequency identification (RFID). In addition, it will employ a wireless multi-hop backhaul to transfer data collected by a myriad of devices to users or applications such as digital twins operating in a Metaverse. A critical issue is that the number of packets collected and transferred to the Internet is bounded by limited network resources such as bandwidth and energy. In this respect, IoT networks have adopted technologies such as time division multiple access (TDMA), signal interference cancellation (SIC) and multiple-input multiple-output (MIMO) in order to increase network capacity. Another fundamental issue is energy. To this end, researchers have exploited radio frequency (RF) energy-harvesting technologies to prolong the lifetime of energy constrained sensors and smart devices. Specifically, devices with RF energy harvesting capabilities can rely on ambient RF sources such as access points, television towers, and base stations. Further, an operator may deploy dedicated power beacons that serve as RF-energy sources. Apart from that, in order to reduce energy consumption, devices can adopt ambient backscattering communication technologies. Advantageously, backscattering allows devices to communicate using negligible amount of energy by modulating ambient RF signals. To address the aforementioned issues, this thesis first considers data collection in a two-tier MIMO ambient RF energy-harvesting network. The first tier consists of routers with MIMO capability and a set of source-destination pairs/flows. The second tier consists of energy harvesting devices that rely on RF transmissions from routers for energy supply. The problem is to determine a minimum-length TDMA link schedule that satisfies the traffic demand of source-destination pairs and energy demand of energy harvesting devices. It formulates the problem as a linear program (LP), and outlines a heuristic to construct transmission sets that are then used by the said LP. In addition, it outlines a new routing metric that considers the energy demand of energy harvesting devices to cope with routing requirements of IoT networks. The simulation results show that the proposed algorithm on average achieves 31.25% shorter schedules as compared to competing schemes. In addition, the said routing metric results in link schedules that are at most 24.75% longer than those computed by the LP

    Physician-Confirmed and Administrative Definitions of Stroke in UK Biobank Reflect the Same Underlying Genetic Trait

    Get PDF
    BACKGROUND: Stroke in UK Biobank (UKB) is ascertained via linkages to coded administrative datasets and self-report. We studied the accuracy of these codes using genetic validation. METHODS: We compiled stroke-specific and broad cerebrovascular disease (CVD) code lists (Read V2/V3, ICD-9/-10) for medical settings (hospital, death record, primary care) and self-report. Among 408,210 UKB participants, we identified all with a relevant code, creating 12 stroke definitions based on the code type and source. We performed genome-wide association studies (GWASs) for each definition, comparing summary results against the largest published stroke GWAS (MEGASTROKE), assessing genetic correlations, and replicating 32 stroke-associated loci. RESULTS: The stroke case numbers identified varied widely from 3,976 (primary care stroke-specific codes) to 19,449 (all codes, all sources). All 12 UKB stroke definitions were significantly correlated with the MEGASTROKE summary GWAS results (rg.81-1) and each other (rg.4-1). However, Bonferroni-corrected confidence intervals were wide, suggesting limited precision of some results. Six previously reported stroke-associated loci were replicated using ≥1 UKB stroke definition. CONCLUSIONS: Stroke case numbers in UKB depend on the code source and type used, with a 5-fold difference in the maximum case-sample size. All stroke definitions are significantly genetically correlated with the largest stroke GWAS to date

    Optimizing Sample Delivery in RF-Charging Multi-Hop IoT Networks

    No full text
    This paper studies sample delivery in a multi-hop network where a power beacon charges devices via radio frequency (RF) signals. Devices forward samples with a deadline from a source to a sink. The goal is to minimize the power beacon’s transmit power and guarantee that samples arrive at the sink with probability (1-) by their deadline, where is a given probability of failure. A key challenge is that the power beacon does not have instantaneous channel gains information to devices and also between devices; i.e., it does not know the energy level of devices. To this end, we formulate a chance-constrained stochastic program for the problem at hand, and employ the sample-average approximation (SAA) method to compute a solution. We also outline two novel approximation methods: Sampling based Probabilistic Optimal Power Allocation (S-POPA) and Bayesian Optimization based Probabilistic Optimal Power Allocation (BO-POPA). Briefly, S-POPA generates a set of candidate solutions and iteratively learns the solution that returns a high probability of success. On the other hand, BO-POPA applies the Bayesian optimization framework to construct a surrogate model to predict the reward value of transmit power allocations. Numerical results show that the performance of S-POPA and BO-POPA achieves on average 86.91% and 79.25% of the transmit power computed by SAA

    Advances in Fabrication Materials of Honeycomb Structure Films by the Breath-Figure Method

    No full text
    Creatures in nature possess almost perfect structures and properties, and exhibit harmonization and unification between structure and function. Biomimetics, mimicking nature for engineering solutions, provides a model for the development of functional surfaces with special properties. Recently, honeycomb structure materials have attracted wide attention for both fundamental research and practical applications and have become an increasingly hot research topic. Though progress in the field of breath-figure formation has been reviewed, the advance in the fabrication materials of bio-inspired honeycomb structure films has not been discussed. Here we review the recent progress of honeycomb structure fabrication materials which were prepared by the breath-figure method. The application of breath figures for the generation of all kinds of honeycomb is discussed

    Ordered Honeycomb Structural Interfaces for Anticancer Cells Growth

    No full text
    The patterned honeycomb structure film with the aggregation-induced emission property was prepared successfully by the breath figure method and photopolymerization method. Characterization of the HeLa and HepG2 cell culture on this surface indicates the porous honeycomb structures show anticancer cells growth function. So this kind of honeycomb structure will be promising for the control of cancer cell growth behaviors and achieving the application of anticancer

    Ordered Honeycomb Structure Surface Generated by Breath Figures for Liquid Reprography

    No full text
    In this paper, photoelectric cooperative induced patterned wetting is demonstrated on a hydrophobic ordered polymeric honeycomb structure surface, which is prepared by BF method, then photosensitizing with a dye and hydrophobizing with low-surface-energy materials; finally, photoelectric cooperative induced patterned wetting is achieved on such a hydrophobic honeycomb structure surface. These results indicate that this work is promising for broadening the applications of photoelectric cooperative liquid reprography, which break the limitations of only using inorganic materials and super-hydrophobic materials. It should be of great scientific interest to extend the relevant research from inorganic nanorod, nanopore, and nanotube structures to polymeric honeycomb structures, because polymeric materials can overcome the inherent drawbacks of the inorganic materials owing to their advantages of low specific weight, flexibility, tunable material properties, and wide variety
    corecore